• 主管部门:
  • 中国科学院
  • 主办单位:
  • 中科院科技战略咨询研究院
  • 出版单位:
  • 世界科学技术杂志社
    科学出版社
  • 主编:
  • 陈凯先
  • 执行主编:
  • 胡镜清 陈士林 叶阳
  • 副主编:
  • (按姓氏笔划排列)王 伟 王 阶 王拥军 王喜军 孔令义 吕文亮 孙晓波 李 萍 李志刚 张卫东 陈立典 果德安 罗国安 赵军宁 徐宏喜 高秀梅 唐旭东 梁繁荣 葛金文
  • 名誉社长:
  • 徐伟宣
  • 社长:
  • 张志华
  • 编辑部主任:
  • 王 瑀
  • 编辑部:
  • 张娜娜 马雅静 方垚 王涵 何岸波 郭嫦娥
  • 责任译审:
  • 王晶
  • 国际刊号:
  • 1674-3849
  • 国内刊号:
  • 11-5699/R
  • 社址:
  • 北京市海淀区中关村东路55号思源楼1203
  • 邮编:
  • 100190
  • 电话:
  • 010-62616352
  • 网址:
  • www.wst.ac.cn
  • E-mail:
  • wst@casipm.ac.cn
  • 海外发行号:
  • M1644
  • 邮刊代号:
  • 2-534

基于复杂网络结合关联规则的《傅青主女科》用药规律探究
The Study Based on the Complex Networks and Association Rules of Fu Qingzhu Gynecologyon the Law of Medication
投稿时间:2019-03-21  修订日期:2019-04-10
DOI:
中文关键词:  傅青主女科  数据挖掘  复杂网络  关联规则  用药规律
英文关键词:Fu Qingzhu gynecology  Data mining  Complex networks  Association rules  The law of medication
基金项目:国家自然科学基金青年(No.81704200),国家自然科学基金联合(No. u1504826),河南省科技攻关项目(No.172102310422)
作者单位E-mail
陈丽平 南阳理工学院/河南省张仲景方药与免疫调节重点实验室河南中医药大学/呼吸疾病诊疗与新药研发河南省协同创新中心 942202160@qq.com 
卞华 南阳理工学院/河南省张仲景方药与免疫调节重点实验室 Biancrown@163.com 
胡久略 南阳理工学院/河南省张仲景方药与免疫调节重点实验室  
刑静宇 南阳理工学院/河南省张仲景方药与免疫调节重点实验室  
杨淑慧 南阳理工学院/河南省张仲景方药与免疫调节重点实验室  
李佳 南阳理工学院/河南省张仲景方药与免疫调节重点实验室  
摘要点击次数: 55
全文下载次数: 0
中文摘要:
      目的:探究妇科名著《傅青主女科》77首方剂的用药特色。方法:以文成堂刻本《傅青主女科》77方为数据源,先用Pajek5.07工具进行可视化处理的复杂网络分析,以中药作为结点构建复杂网络图,并将“共同出现”的中药配伍关系连成网络结构,再行关联规则挖掘,最后对挖掘结果进行分析讨论。结果:傅氏用药频次>20的有6味,按照功能主治分为16类,对96味中药进行复杂网络分析,得到6个有意义的网络聚类组,如C1健脾益气;C2养阴清热;C3补益肾阳;C4偏清热凉血; C5清热泻火,补益阴津;C6温经补血,理气化瘀。高频中药之间二联121组,三联513组,四联867组,如五联的熟地黄、人参、白术、白芍和当归。结论:傅氏以补气养血、培补正气为主,补虚药以当归为首,常配伍人参,白术次之,重视补气健脾化湿。常用的核心中药有当归、熟地黄、山茱萸、白芍、人参、白术、黄芪,核心方剂有异功散、四物汤、清经散、右归丸、完带汤,复杂网络结合关联规则在挖掘核心中药和方剂方面有一定优势,可视化效果较好。
英文摘要:
      objective To explore the drug characteristics of the 77 prescriptions in the Fu Qingzhu Gynecology literature. Methods Photocopy to chengdu hall Fu Qingzhu Gynecology "s 77 square as the data source. First, complex network analysis with visual processing was carried out with Pajek5.07 tool, and complex network graph was constructed with traditional Chinese medicine as the node, and the "co-occurrence" compatibility relationship of traditional Chinese medicine was connected into the network structure, and then association rule mining was carried out. Finally, the mining results were analyzed and discussed. Results The frequency of fu"s drug use > 20 has 6 flavors, which are divided into 16 categories according to the functional indications. The complex network analysis of 96 kinds of traditional Chinese medicine is carried out, and 6 meaningful network clustering groups are obtained, such as C1 for strengthening spleen and enriching qi. C2 nourishing Yin and clearing heat; C3 nourishes kidney Yang; C4 slants clear hot cool blood; C5 clearing away heat, relieving fire, and tonifying Yin and jin; C6 warms meridians and invigorates blood, regulating qi and removing blood stasis. Among the high frequency traditional Chinese medicine, there were 121 groups with two couplets, 513 groups with three coupletsand 867 groups with four couplets, such as the five couplets of rehmannia rehmanniae, ginseng, atractylodes macrocephala, radix paeoniae alba and angelica sinensis. Conclusion Fu''s main tonifying qi and blood, training and tonifying qi, tonifying deficiency drugs to angelica first, often compatibility of ginseng, atractylodes, pay attention to tonifying qi and spleen dampness. The commonly used core Chinese medicines include angelica root, rehmannia root, cornus officinalis, radix paeoniae alba, ginseng, atractylodes root, astragalus root, and astragalus root. The core prescriptions include yigong powder, siwu decoction, qingjing powder, yougui pill, and wandai decoction. The complex network combined with association rules has certain advantages in the mining of core Chinese medicines and prescriptions, with good visualization effect.
  查看/发表评论  下载PDF阅读器
关闭