• 主管部门:
  • 中国科学院
  • 主办单位:
  • 中科院科技战略咨询研究院
  • 出版单位:
  • 世界科学技术杂志社
    科学出版社
  • 主编:
  • 陈凯先
  • 执行主编:
  • 胡镜清 陈士林 叶阳
  • 副主编:
  • (按姓氏笔划排列)王 伟 王 阶 王拥军 王喜军 孔令义 吕文亮 孙晓波 李 萍 李志刚 张卫东 陈立典 果德安 罗国安 赵军宁 徐宏喜 高秀梅 唐旭东 梁繁荣 葛金文
  • 名誉社长:
  • 徐伟宣
  • 社长:
  • 张志华
  • 编辑部主任:
  • 王 瑀
  • 编辑部:
  • 张娜娜 马雅静 方垚 王涵 何岸波 郭嫦娥
  • 责任译审:
  • 王晶
  • 国际刊号:
  • 1674-3849
  • 国内刊号:
  • 11-5699/R
  • 社址:
  • 北京市海淀区中关村东路55号思源楼1203
  • 邮编:
  • 100190
  • 电话:
  • 010-62616352
  • 网址:
  • www.wst.ac.cn
  • E-mail:
  • wst@casipm.ac.cn
  • 海外发行号:
  • M1644
  • 邮刊代号:
  • 2-534

应用数据挖掘技术研究韩明向教授治疗原发性支气管肺癌的用药规律分析
Researching Han Mingxiang''s Medical Experience Treatment on primary bronchial lung cancer through Data Mining Technology
投稿时间:2019-03-06  修订日期:2019-03-27
DOI:
中文关键词:  原发性支气管肺癌  数据挖掘  名医经验  用药规律。
英文关键词:primary bronchial lung cancer  Data mining  Famous doctor experience  Law of medication.
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目) 1)基于mTORC1调节自噬相关复合体Beclin1/Bcl-2研究芪玉三龙汤抗非小细胞肺癌机制(项目编号:81874431);2)芪玉三龙汤调控miRNA21介导的PTEN/PI3K信号通路抑制非小细胞肺癌的机制研究(项目编号:81804039);3)国家中医药管理局肺气虚证重点研究室(国中药函[2009]95号)
作者单位E-mail
程建超 安徽中医药大学 1139190821@qq.com 
李泽庚 安徽中医药大学 1139190821@qq.com 
摘要点击次数: 37
全文下载次数: 
中文摘要:
      目的:应用数据挖掘技术研究国家级名老中医韩明向教授治疗原发性支气管肺癌的用药规律,为临床治疗原发性支气管肺癌提供组方依据及思路。方法:收集216例韩明向教授门诊治疗肺癌患者的首诊处方,运用office2016建立方药数据库,经规范化处理后对216例首诊处方进行用药类别、药味的频数统计,采用SPASS21.0、SPASS Clementine Cliene11.1对出现次数≧40次的中药进行聚类分析、二项关联分析、三项关联分析及四项关联分析。结果:药物频数分析得出补虚药、清热药、化痰药、利水渗湿药以及活血药居前五位;聚类分析可得出8个聚类,主要是益气养阴类、化痰祛瘀类和清热解毒类等药物组合;关联规则得出黄芪→防风,陈皮→鱼腥草,浙贝母→牡蛎,白花蛇舌草→半枝莲,莪术→鱼腥草等常用药对和补脾益肺药、化痰散结药、活血化瘀药及解毒抗癌药的常见药物组合。结论:韩教授论治肺癌时补脾益肺以治其本,化痰、祛瘀、解毒以治其标。
英文摘要:
      Objective:To research Professor Han Mingxiang’s medical experience treatment on Primary bronchial lung cancer through data mining technology,providing formulation basis and ideas for clinical treatment of primary bronchial lung cancer.Method: 216 cases of first-visit prescriptions of lung cancer patients treated by Professor Han Mingxiang were collected .Prescription database was established by office 2016.After standardized treatment,frequency statistics was made on 216 cases of first-visit prescriptions in terms of medication category and taste.SPASS21.0 and SPASS Clementine Cliene 11.1 were used for cluster analysis, binomial correlation analysis, three correlation analysis and four correlation analysis of Chinese medicines whose occurrence times were more than 40.Result:Chinese medicine frequency analysis showed that top five were reinforcing deficiency medicine, clearing heat medicine, eliminating phlegm medicine, diuretics for eliminating dampness and removing blood stasis medicine .Cluster analysis showed there were 8 clusters, which were mainly the combination of supplementing qi and nourishing yin medicine, eliminating phlegm and removing blood stasis medicine, and clearing heat and detoxifying medicine.The association rules showed that common couplet medicines included astragalus root and divaricate saposhnikovia root,dried tangerine peel and heartleaf houttuynia herb,thunberbg fritillary bulb and oyster shell,hedyotis diffusa and Sculellaria barbata,zedoray rhizome and heartleaf houttuynia herb,and common medication combinations included reinforcing spleen and benefiting lung medicine ,eliminating phlegm and resolving masses medicine, removing blood stasis medicine and detoxification and anticancer medicine.Conclusion:In terms of treatment for lung cancer,Professor Han adopted the method of reinforcing spleen and benefiting lung for radical treatment and the method of eliminating phlegm removing blood stasis and detoxification for symptomatic treatment.
  查看/发表评论  下载PDF阅读器
关闭